ENGINEERING STANDARD

FOR

LPG PRESSURE STORAGE SPHERES

ORIGINAL EDITION

MAY 1993

This standard specification is reviewed and updated by the relevant technical committee on Mar. 1999(1) and Dec. 2011(2). The approved modifications are included in the present issue of IPS.
FOREWORD

The Iranian Petroleum Standards (IPS) reflect the views of the Iranian Ministry of Petroleum and are intended for use in the oil and gas production facilities, oil refineries, chemical and petrochemical plants, gas handling and processing installations and other such facilities.

IPS are based on internationally acceptable standards and include selections from the items stipulated in the referenced standards. They are also supplemented by additional requirements and/or modifications based on the experience acquired by the Iranian Petroleum Industry and the local market availability. The options which are not specified in the text of the standards are itemized in data sheet/s, so that, the user can select his appropriate preferences therein.

The IPS standards are therefore expected to be sufficiently flexible so that the users can adapt these standards to their requirements. However, they may not cover every requirement of each project. For such cases, an addendum to IPS Standard shall be prepared by the user which elaborates the particular requirements of the user. This addendum together with the relevant IPS shall form the job specification for the specific project or work.

The IPS is reviewed and up-dated approximately every five years. Each standards are subject to amendment or withdrawal, if required, thus the latest edition of IPS shall be applicable

The users of IPS are therefore requested to send their views and comments, including any addendum prepared for particular cases to the following address. These comments and recommendations will be reviewed by the relevant technical committee and in case of approval will be incorporated in the next revision of the standard.

Standards and Research department
No.17, Street14, North Kheradmand
Karimkhan Avenue, Tehran, Iran.
Postal Code- 158586851
Tel: 88810459-60 & 66153055
Fax: 88810462
Email: Standards@nioc.ir
GENERAL DEFINITIONS
Throughout this Standard the following definitions shall apply.

COMPANY:
Refers to one of the related and/or affiliated companies of the Iranian Ministry of Petroleum such as National Iranian Oil Company, National Iranian Gas Company, National Petrochemical Company and National Iranian Oil Refinery And Distribution Company.

PURCHASER:
Means the “Company” where this standard is a part of direct purchaser order by the “Company”, and the “Contractor” where this Standard is a part of contract document.

VENDOR AND SUPPLIER:
Refers to firm or person who will supply and/or fabricate the equipment or material.

CONTRACTOR:
Refers to the persons, firm or company whose tender has been accepted by the company.

EXECUTOR:
Executor is the party which carries out all or part of construction and/or commissioning for the project.

INSPECTOR:
The Inspector referred to in this Standard is a person/persons or a body appointed in writing by the company for the inspection of fabrication and installation work.

SHALL:
Is used where a provision is mandatory.

SHOULD:
Is used where a provision is advisory only.

WILL:
Is normally used in connection with the action by the “Company” rather than by a contractor, supplier or vendor.

MAY:
Is used where a provision is completely discretionary.
CONTENTS

0. INTRODUCTION ... 4
1. SCOPE ... 5
2. REFERENCES .. 5
3. UNITS ... 6
4. MATERIAL SELECTION ... 6
5. GENERAL INFORMATION ... 7
6. DESIGN .. 7
 6.1 General .. 7
 6.2 Design Data .. 7
 6.3 Calculation of Safe Volume ... 8
 6.4 Minimum Required Thickness ... 11
 6.5 Nozzles and Connections ... 11
 6.6 Mountings .. 13
 6.7 Access Facilities .. 16
 6.8 Supports .. 16
 6.9 Earthing ... 16
 6.10 Fire Proofing .. 16
7. FABRICATION ... 16
8. WELDING ... 17
9. SITE ERECTION .. 21
10. INSPECTION AND TEST ... 21
 10.6 Inspection of Shell Joints ... 21
 10.7 Inspection of Nozzle Welds ... 21
 10.14 Hydrostatic Test ... 22
11. INSULATION ... 22
0. INTRODUCTION

For storage of LPG, the principal above-ground storage methods are:

1) Pressure storage at ambient temperature
2) Fully refrigerated (at around atmospheric pressure)
3) Refrigerated-Pressure

For the purpose of this Standard only the pressure storage at ambient temperature and refrigerated pressure storage are considered.

1) Pressure Storage at Ambient Temperature.

Because of the high vapor pressure of LPG, the liquid at ambient temperature must be stored under pressure in vessels and spheres designed to withstand safely the vapor pressure at the maximum liquid temperature.

2) Refrigerated-pressure Storage.

(Sometimes referred to as semi refrigeration storage) of LPG combines partial refrigeration with low or medium pressure. An attractive feature of refrigerated, pressure storage is its flexibility, making it possible for a vessel to be used at different times for butane or propane.

Thus, a storage sphere designed for pressure storage of butane at atmospheric temperature could be used for the refrigerated pressure storage of propane by chilling the propane and insulating the vessel so that the vapor pressure does not exceed the sphere normal working pressure.

Refrigerated-pressure storage in spheres has the following advantages:

a) The evolved vapor (boil-off-for re-liquefication) comes off at a sufficient pressure to overcome line friction where the refrigeration equipment is remote from the sphere.

b) The ratio of surface area to volume is less, and therefore heat leak from the atmosphere is proportionately less.

“Storage Tanks” are broad and contain various types and usages of paramount importance, therefore a group of engineering standards are prepared to cover the subject. This group includes the following standards:

<table>
<thead>
<tr>
<th>STANDARD CODE</th>
<th>STANDARD TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPS-G-ME-100</td>
<td>“Atmospheric above Ground Welded Steel Storage Tanks”</td>
</tr>
<tr>
<td>IPS-E-ME-110</td>
<td>“Large Welded Low Pressure Storage Tanks”</td>
</tr>
<tr>
<td>IPS-E-ME-120</td>
<td>“Aviation Turbine Fuel Storage Tanks”</td>
</tr>
<tr>
<td>IPS-E-ME-130</td>
<td>“Pressure Storage Spheres (FOR LPG)”</td>
</tr>
</tbody>
</table>
1. SCOPE

1.1 This Engineering Standard covers the minimum requirements for design of pressure storage spheres. In this Standard, pressure storage means storage spheres with design pressure above 100 KPa (1 bar) gage. The requirements of this Standard apply to both refrigerated and non-refrigerated LPG pressure storage spheres.

1.2 This standard does not include design of “Liquefied Natural Gas” (LNG) pressure storage spheres.

1.3 This Standard Specification shall be used together and in accordance with the referenced codes and standards mentioned in 2.

In the case of conflict between this Specification and the referred codes and standards, the most stringent requirements shall govern.

1.4 Requirements for purchasing and shop fabrication of parts to be incorporated into pressure storage spheres are covered in IPS-M-ME-130 “Material and Equipment Standard for Pressure Storage Spheres.”

Field erection of pressure storage spheres shall be in accordance with “Iranian Petroleum Construction Standard for Pressure Storage Spheres” (IPS-C-ME-130).

1.5 This Standard is intended for use in oil refineries, chemical plants, marketing installations, gas plants and where applicable, in exploration, production and new ventures.

Note 1:

This standard specification is reviewed and updated by the relevant technical committee on Mar. 1999. The approved modifications by T.C. were sent to IPS users as amendment No. 1 by circular No. 73 on Mar. 1999. These modifications are included in the present issue of IPS.

Note 2:

This standard specification is reviewed and updated by the relevant technical committee on Dec. 2011. The approved modifications by T.C. were sent to IPS users as amendment No. 2 by circular No. 322 on Dec. 2011. These modifications are included in the present issue of IPS.

2. REFERENCES

Throughout this Standard the following dated and undated standards/codes are referred to. These referenced documents shall, to the extent specified herein, form a part of this standard. For dated references, the edition cited applies. The applicability of changes in dated references that occur after the cited date shall be mutually agreed upon by the Company and the Vendor. For undated references, the latest edition of the referenced documents (including any supplements and amendments) applies.

ASME (AMERICAN SOCIETY OF MECHANICAL ENGINEERS)

Section II-2010 “Material Specification”
Section IX-2010 “Welding and Brazing Qualifications”
Section V-2010 “Non-destructive Examination”
ASME B16.5-2009 “Pipe Flanges and Flanged Fittings”
ASME B31.3-2010 “Process Piping”
3. UNITS

International system of units (SI) in accordance with IPS-E-GN-100 shall be used.

Whenever reference is made to API/ASME or any other Standards, equivalent SI unit system for dimensions, fasteners and flanges shall be substituted.

For pipe size the international nomenclature “diameter nominal” written as DN 15, 25, 40, 50, etc. has been used in accordance with ISO 6708-1995. ASME B16.5-2009 and ASME B31.3-2010. Also for pipe flanges pressure temperature ratings “pressure nominal” written as PN 20, 50, 64, etc. has been used in accordance with said Standards.

4. MATERIAL SELECTION

4.1 All material of construction for pressure storage spheres shall meet the requirements of Section II of the ASME Boiler and Pressure Vessel Code.

4.2 The following requirements are supplementary:

4.2.1 The selector of the material of construction for pressure parts and their integral attachments shall take into account the suitability of the material with regard to fabrication and to the conditions under which they will eventually operate.

4.2.2 Special consideration should be given to the selection of materials for pressure storage spheres designed to operate below 0°C. Austenitic stainless steels and aluminum alloys are not susceptible to low stress brittle fracture and no special requirements are necessary for their use at
temperatures down to -196°C.

4.2.3 Casting shall not be used as pressure components welded to the shell of pressure storage spheres.

4.2.4 Materials having specified minimum yield strength at room temperature greater than 483 MPa (70,000 Psi) shall not be used without prior approval of the Company Engineer.

4.2.5 Materials of non-pressure retaining parts to be welded directly to pressure retaining parts shall be of the same material as the pressure retaining parts.

4.2.6 Material of attachments other than those mentioned in para.4.2.5 above, such as lower support columns, platforms, stairways, pipe supports, insulation support rings, shall be carbon steel of ASTM A283 Gr.C or equivalent. External non-pressure retaining part boltings shall be carbon steel of ASTM A307 Gr. B or equivalent.

4.2.7 The internal bolts and nuts including U-Bolts shall be of type 410 or 405 stainless steel material.

4.2.8 Material of anchor bolts shall be carbon steel of ASTM A307 Gr.B. or equivalent.

5. GENERAL INFORMATION

“Liquefied Petroleum Gas” (LPG) refers, in practice, to those C3 and C4 hydrocarbons, i.e. propane, butane, propylene, butylene and the isomers of the C4 compounds that can be liquefied by moderate pressure. Some examples of the main gases, together with their boiling-points at atmospheric pressure are given in the Table 1 below.

<table>
<thead>
<tr>
<th>LPG CHEMICAL</th>
<th>B.P. °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>FORMULA</td>
</tr>
<tr>
<td>PROPYLENE</td>
<td>C₃H₆</td>
</tr>
<tr>
<td>PROPANE</td>
<td>C₃H₈</td>
</tr>
<tr>
<td>BUTYLENE</td>
<td>C₄H₈</td>
</tr>
<tr>
<td>BUTANE</td>
<td>C₄H₁₀</td>
</tr>
</tbody>
</table>

As it is seen from the boiling points listed in the Table 1 above, to liquefy these gases for ease of storage and transportation it is normally necessary to reduce the temperature to well below ambient or to pressurize them until a liquid is formed. In practice, temperature reduction by refrigeration, pressurization, or a combination of the two, are commonly used to achieve liquefaction.

Commercial grades of propane and butane are not pure compounds, thus commercial propane is mainly propane with small amounts of other hydrocarbons such as butane, butylene, propylene and ethane, and commercial butane is mainly normal butane and iso-butane, with small amounts of propane, propylene and butylene.

6. DESIGN

6.1 General

Design of pressure storage spheres shall be in accordance with Section VIII, Div. 1&2 (2010) of the ASME “Rules for Construction of Pressure Vessels”
severest loading under the following two conditions:

6.2.1.1 Condition I (Normal Operating Condition):

a) Load combination shall be considered on the assumption that the following loads act simultaneously:
 - Internal or external pressure, when necessary, at design temperature.
 - Operating weight.
 - Wind load or earthquake load, whichever governs.

b) The shell plate thickness shall be that corresponding to the corroded condition, that is to say, nominal thickness minus corrosion allowance.

6.2.1.2 Condition II (Condition of hydrostatic testing at the operating position):

a) Load combination shall be considered on the assumption that the following loads act simultaneously:
 - Internal pressure due to hydrostatic test.
 - Empty weight of the sphere.
 - Weight of water for testing.
 - One-third the wind load.

b) The shell plate thickness shall be that corresponding to the corroded condition, i.e. nominal thickness minus corrosion allowance.

6.2.2 Corrosion allowance

6.2.2.1 Generally, minimum corrosion allowance of 1.5 mm shall be provided for carbon steel material, unless otherwise specified. No corrosion allowance shall be provided for high alloy or non-ferrous materials.

6.2.2.2 All pressure retaining parts shall be provided with the specified corrosion allowance on all surfaces exposed to corrosive fluid.

6.2.2.3 For non-removable internal parts, one-half of specified corrosion allowance shall be added to all surfaces and one-fourth of the corrosion allowance shall be added to all surfaces of removable internal parts.

6.2.2.4 No corrosion allowance shall be provided for external parts, unless otherwise specified.

6.2.3 The pressure retaining parts of pressure storage spheres and their support columns shall be designed to be filled with water.

6.2.4 Pressure storage spheres shall be supported so that the bottom is no less than 1 m above finished grade.

6.3 Calculation of Safe Volume

6.3.1 The volume of liquid stored in a vessel must be limited to allow sufficient room for thermal expansion. The maximum volume \(V \) of liquid gas at a certain temperature \(T°C \) that may be charged into a vessel is determined by the formula:

\[
V = \frac{D \times W}{g \times T \times 100}
\]
Where:

\[W = \text{Water capacity of storage vessel at 15.6°C (60°F)} \]
\[D = \text{Maximum filling density. (Table 2)} \]
\[G = \text{Specific gravity of liquid gas at 15.6°C.} \]
\[F = \text{Liquid volume correction factor from temperature } T^\circ \text{ to } 15.6°C. \text{ (Table 3)} \]

6.3.2 The filling density (D) is the percent ratio of the weight of liquid gas in a vessel to the weight of water required to fill the vessel at 15.6°C and can be obtained from Table 2.

6.3.3 A volume correction factor (F) is necessary because the lower the temperature of the liquid below ambient at the time of filling the vessel, the greater will be the expansion when the temperature of the liquid reaches ambient. Volume correction factor (F) can be obtained from Table 3.

TABLE 2- MAXIMUM PERMITTED FILLING DENSITY (PERCENT)

<table>
<thead>
<tr>
<th>SPECIFIC GRAVITY AT 15.6°C (60°F)</th>
<th>ABOVE-GROUND VESSELS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UP TO 5000 LITERS</td>
</tr>
<tr>
<td></td>
<td>OVER 5000 LITERS</td>
</tr>
<tr>
<td>0.496-0.503</td>
<td>41</td>
</tr>
<tr>
<td>0.504-0.510</td>
<td>42</td>
</tr>
<tr>
<td>0.511-0.519</td>
<td>43</td>
</tr>
<tr>
<td>0.520-0.527</td>
<td>44</td>
</tr>
<tr>
<td>0.528-0.536</td>
<td>45</td>
</tr>
<tr>
<td>0.537-0.544</td>
<td>46</td>
</tr>
<tr>
<td>0.545-0.552</td>
<td>47</td>
</tr>
<tr>
<td>0.553-0.560</td>
<td>48</td>
</tr>
<tr>
<td>0.561-0.568</td>
<td>49</td>
</tr>
<tr>
<td>0.569-0.576</td>
<td>50</td>
</tr>
<tr>
<td>0.577-0.584</td>
<td>51</td>
</tr>
<tr>
<td>0.585-0.592</td>
<td>52</td>
</tr>
<tr>
<td>0.593-0.600</td>
<td>53</td>
</tr>
</tbody>
</table>

6.3.4 As an example, the maximum volume of commercial propane (Specific Gravity G = 0.51) at 10°C that may be charged into a storage vessel of 50 m³ (water capacity at 15.6°C) is:

\[D = 45 \text{ from Table 2} \]
\[F = 1.016 \text{ from Table 3 at 10°C} \]
\[W = 50 \text{ m}^3 \]

\[
V = \frac{45 \times 50}{0.51 \times 1.016 \times 100} = 43.42 \text{ m}^3
\]
<table>
<thead>
<tr>
<th>Observed Temperature °F</th>
<th>Propane 0.5079</th>
<th>Propane 0.510</th>
<th>Propane 0.520</th>
<th>Propane 0.530</th>
<th>Propane 0.540</th>
<th>Propane 0.550</th>
<th>Butane 0.5070</th>
<th>Butane 0.5080</th>
<th>Butane 0.5090</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.160</td>
<td>1.155</td>
<td>1.153</td>
<td>1.146</td>
<td>1.146</td>
<td>1.133</td>
<td>1.137</td>
<td>1.122</td>
<td>1.116</td>
</tr>
<tr>
<td>45</td>
<td>1.153</td>
<td>1.146</td>
<td>1.146</td>
<td>1.140</td>
<td>1.134</td>
<td>1.128</td>
<td>1.123</td>
<td>1.115</td>
<td>1.106</td>
</tr>
<tr>
<td>40</td>
<td>1.146</td>
<td>1.140</td>
<td>1.140</td>
<td>1.134</td>
<td>1.134</td>
<td>1.128</td>
<td>1.122</td>
<td>1.110</td>
<td>1.101</td>
</tr>
<tr>
<td>35</td>
<td>1.134</td>
<td>1.134</td>
<td>1.128</td>
<td>1.128</td>
<td>1.122</td>
<td>1.116</td>
<td>1.106</td>
<td>1.096</td>
<td>1.092</td>
</tr>
<tr>
<td>30</td>
<td>1.127</td>
<td>1.127</td>
<td>1.122</td>
<td>1.121</td>
<td>1.115</td>
<td>1.105</td>
<td>1.091</td>
<td>1.087</td>
<td>1.085</td>
</tr>
<tr>
<td>25</td>
<td>1.120</td>
<td>1.120</td>
<td>1.114</td>
<td>1.110</td>
<td>1.099</td>
<td>1.088</td>
<td>1.080</td>
<td>1.080</td>
<td>1.080</td>
</tr>
<tr>
<td>20</td>
<td>1.112</td>
<td>1.112</td>
<td>1.107</td>
<td>1.102</td>
<td>1.097</td>
<td>1.093</td>
<td>1.084</td>
<td>1.083</td>
<td>1.080</td>
</tr>
<tr>
<td>15</td>
<td>1.105</td>
<td>1.105</td>
<td>1.099</td>
<td>1.094</td>
<td>1.091</td>
<td>1.087</td>
<td>1.083</td>
<td>1.081</td>
<td>1.080</td>
</tr>
<tr>
<td>10</td>
<td>1.102</td>
<td>1.102</td>
<td>1.096</td>
<td>1.092</td>
<td>1.089</td>
<td>1.086</td>
<td>1.083</td>
<td>1.081</td>
<td>1.080</td>
</tr>
<tr>
<td>5</td>
<td>1.100</td>
<td>1.100</td>
<td>1.095</td>
<td>1.091</td>
<td>1.089</td>
<td>1.086</td>
<td>1.083</td>
<td>1.081</td>
<td>1.080</td>
</tr>
<tr>
<td>0</td>
<td>1.100</td>
<td>1.100</td>
<td>1.098</td>
<td>1.094</td>
<td>1.091</td>
<td>1.087</td>
<td>1.083</td>
<td>1.081</td>
<td>1.080</td>
</tr>
<tr>
<td>10</td>
<td>0.993</td>
<td>0.993</td>
<td>0.986</td>
<td>0.982</td>
<td>0.979</td>
<td>0.975</td>
<td>0.972</td>
<td>0.970</td>
<td>0.969</td>
</tr>
<tr>
<td>15</td>
<td>0.990</td>
<td>0.990</td>
<td>0.983</td>
<td>0.979</td>
<td>0.976</td>
<td>0.973</td>
<td>0.970</td>
<td>0.968</td>
<td>0.967</td>
</tr>
<tr>
<td>20</td>
<td>0.987</td>
<td>0.987</td>
<td>0.981</td>
<td>0.977</td>
<td>0.974</td>
<td>0.971</td>
<td>0.968</td>
<td>0.966</td>
<td>0.965</td>
</tr>
<tr>
<td>25</td>
<td>0.984</td>
<td>0.984</td>
<td>0.979</td>
<td>0.975</td>
<td>0.972</td>
<td>0.969</td>
<td>0.966</td>
<td>0.964</td>
<td>0.963</td>
</tr>
<tr>
<td>30</td>
<td>0.982</td>
<td>0.982</td>
<td>0.978</td>
<td>0.974</td>
<td>0.971</td>
<td>0.968</td>
<td>0.965</td>
<td>0.963</td>
<td>0.962</td>
</tr>
<tr>
<td>35</td>
<td>0.980</td>
<td>0.980</td>
<td>0.976</td>
<td>0.972</td>
<td>0.969</td>
<td>0.966</td>
<td>0.964</td>
<td>0.962</td>
<td>0.961</td>
</tr>
<tr>
<td>40</td>
<td>0.978</td>
<td>0.978</td>
<td>0.974</td>
<td>0.970</td>
<td>0.967</td>
<td>0.964</td>
<td>0.962</td>
<td>0.960</td>
<td>0.959</td>
</tr>
<tr>
<td>45</td>
<td>0.976</td>
<td>0.976</td>
<td>0.973</td>
<td>0.970</td>
<td>0.967</td>
<td>0.965</td>
<td>0.962</td>
<td>0.960</td>
<td>0.959</td>
</tr>
<tr>
<td>50</td>
<td>0.974</td>
<td>0.974</td>
<td>0.972</td>
<td>0.969</td>
<td>0.967</td>
<td>0.964</td>
<td>0.961</td>
<td>0.960</td>
<td>0.959</td>
</tr>
<tr>
<td>55</td>
<td>0.972</td>
<td>0.972</td>
<td>0.970</td>
<td>0.967</td>
<td>0.965</td>
<td>0.963</td>
<td>0.960</td>
<td>0.959</td>
<td>0.958</td>
</tr>
<tr>
<td>60</td>
<td>0.970</td>
<td>0.970</td>
<td>0.968</td>
<td>0.965</td>
<td>0.963</td>
<td>0.961</td>
<td>0.958</td>
<td>0.957</td>
<td>0.956</td>
</tr>
<tr>
<td>65</td>
<td>0.968</td>
<td>0.968</td>
<td>0.966</td>
<td>0.964</td>
<td>0.961</td>
<td>0.959</td>
<td>0.956</td>
<td>0.955</td>
<td>0.954</td>
</tr>
<tr>
<td>70</td>
<td>0.966</td>
<td>0.966</td>
<td>0.964</td>
<td>0.962</td>
<td>0.960</td>
<td>0.957</td>
<td>0.954</td>
<td>0.953</td>
<td>0.952</td>
</tr>
<tr>
<td>75</td>
<td>0.964</td>
<td>0.964</td>
<td>0.962</td>
<td>0.960</td>
<td>0.958</td>
<td>0.955</td>
<td>0.953</td>
<td>0.952</td>
<td>0.951</td>
</tr>
<tr>
<td>80</td>
<td>0.962</td>
<td>0.962</td>
<td>0.960</td>
<td>0.958</td>
<td>0.956</td>
<td>0.953</td>
<td>0.951</td>
<td>0.950</td>
<td>0.949</td>
</tr>
<tr>
<td>85</td>
<td>0.960</td>
<td>0.960</td>
<td>0.958</td>
<td>0.956</td>
<td>0.954</td>
<td>0.951</td>
<td>0.949</td>
<td>0.948</td>
<td>0.947</td>
</tr>
<tr>
<td>90</td>
<td>0.958</td>
<td>0.958</td>
<td>0.956</td>
<td>0.954</td>
<td>0.952</td>
<td>0.949</td>
<td>0.947</td>
<td>0.946</td>
<td>0.945</td>
</tr>
<tr>
<td>95</td>
<td>0.956</td>
<td>0.956</td>
<td>0.954</td>
<td>0.952</td>
<td>0.950</td>
<td>0.947</td>
<td>0.945</td>
<td>0.944</td>
<td>0.943</td>
</tr>
<tr>
<td>100</td>
<td>0.954</td>
<td>0.954</td>
<td>0.952</td>
<td>0.950</td>
<td>0.948</td>
<td>0.945</td>
<td>0.943</td>
<td>0.942</td>
<td>0.941</td>
</tr>
</tbody>
</table>
6.4 Minimum Required Thickness

6.4.1 Minimum required thickness of shell plate for pressure storage sphere shall be calculated per ASME “Rules for Construction of Pressure Vessels” Section VIII, Div 1 or 2.

6.4.2 The thicknesses shall be calculated using the procedures outlined in 6.4.1 above excluding any corrosion allowance.

6.5 Nozzles and Connections

Nozzles and connections design for pressure storage spheres shall be in accordance with ASME Code Section VIII with the following supplementary requirements.

6.5.1 Attachments and shell openings, wherever practicable, shall be located so that the welds do not overlap shell seams or interfere with welds of other attachments.

6.5.2 All nozzles for piping shall be flanged and shall have the same P-number as the sphere shell. Corrosion protection equivalent to that of the sphere shall be provided.

6.5.3 Connections smaller than DN-50 (2 in.) may be threaded, except for relief valve connections. Coupling shall be used for threaded connections. Additional coupling-thickness shall be provided for corrosion allowance, as required.

All couplings shall be 6000 LB and installed with full penetration welds.

6.5.4 Nozzles and openings in the bottoms of pressure storage spheres shall be kept as minimum as possible. Connections to the storage sphere shall be positioned, as much as possible, above the maximum liquid level.

6.5.5 The design of nozzles pipe is governed by the following three main considerations:

6.5.5.1 Ability to withstand design pressure. For this purpose the minimum thickness of nozzle shall be calculated in accordance with ASME Code Section VIII for cylindrical shells.

6.5.5.2 Ability to withstand superimposed loading by connected pipe work or fittings. Not conforming to the minimum thickness as required for 6.5.6.1, the nominal thickness of a nozzle intended for connection to external piping shall not be less than:

 a) The value given in Table 4, is increased by any required corrosion allowance.

 b) The nominal (As-built) thickness of the main portion of the vessel shell where this is less than (a) above.

6.5.5.3 Suitability for the recommended forms of branch-to shell attachment welds.

6.5.6 Threaded connections shall not be permitted for piping.
TABLE 4 - THICKNESS OF BRANCHES

<table>
<thead>
<tr>
<th>BRANCH NOMINAL SIZE</th>
<th>MINIMUM THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN INCH</td>
<td>mm</td>
</tr>
<tr>
<td>15 ⅛</td>
<td>2.4</td>
</tr>
<tr>
<td>20 ⅜</td>
<td>2.4</td>
</tr>
<tr>
<td>25 1</td>
<td>2.7</td>
</tr>
<tr>
<td>32 1¼</td>
<td>3.1</td>
</tr>
<tr>
<td>40 1½</td>
<td>3.1</td>
</tr>
<tr>
<td>50 2</td>
<td>3.6</td>
</tr>
<tr>
<td>65 2½</td>
<td>3.9</td>
</tr>
<tr>
<td>80 3</td>
<td>4.7</td>
</tr>
<tr>
<td>100 4</td>
<td>5.4</td>
</tr>
<tr>
<td>125 5</td>
<td>5.4</td>
</tr>
<tr>
<td>150 6</td>
<td>6.2</td>
</tr>
<tr>
<td>200 8</td>
<td>6.9</td>
</tr>
<tr>
<td>250 10</td>
<td>8.0</td>
</tr>
<tr>
<td>300 12</td>
<td>8.0</td>
</tr>
<tr>
<td>350 14</td>
<td>8.8</td>
</tr>
<tr>
<td>400 16</td>
<td>8.8</td>
</tr>
<tr>
<td>450 18</td>
<td>8.8</td>
</tr>
<tr>
<td>500 20</td>
<td>10.0</td>
</tr>
<tr>
<td>600 24</td>
<td>10.0</td>
</tr>
</tbody>
</table>

6.5.7 For nozzles fabricated from pipe, only seamless pipe shall be used.

6.5.8 Forged integral reinforced long-welding neck nozzles shall be used for flange rating of PN 100 (ASME Class 600) and higher.

6.5.9 Nozzles shall normally be designed as set-through types and double welded, from both sides.

6.5.10 Necks of nozzles with sizes DN 350 (14 in.) and larger and manholes may be made of plate materials. Where plate materials are used for nozzle and manhole necks, the method specified in ASTM A-672 shall be used and the material specification shall be the same as those used for pressure storage shells and full radiographic examination of longitudinal joints shall be conducted.

6.5.11 All flanges except those indicated in items 6.5.14 and 6.5.15 below shall conform to ASME B16.5.

6.5.12 All nozzle flanges shall be welding neck and raised face type smooth finish, except that manhole flanges may be slip-on flange type. Where slip-on flanges are used, they shall be welded both sides.

6.5.13 Non-standard flanges shall be calculated per ASME code Section VIII, Div. 1 Appendix 2 according to the design conditions of the pressure storage sphere and external loads imposed by piping reaction.

6.5.14 Large type flanges over DN 600 (24 in. NPS) shall be in accordance with IPS-M-P1-150.

6.5.15 A DN 500 (20 in NPS) minimum manhole shall be provided in the top and bottom of each sphere. Generally top manhole shall have a davit and bottom manhole shall have a hinge.

6.5.16 Minimum Projection of nozzles and manholes shall normally be 150 mm for nozzle size up to DN 150 (6 in. NPS), and 200 mm for DN 200 (8 in. NPS) and over.

6.5.17 The necessity of reinforcing pad on the shell around nozzle opening shall be determined using the procedures outlined in ASME Code Section VIII.

As a general rule nozzles of DN 50 (2 in. NPS) and over and manholes should be provided with a reinforcing pad and smaller size nozzles shall be provided with a half coupling type reinforcement except in case of item 6.5.8 above.
6.6 Mountings

Pressure storage spheres, upon approval of the Owner, shall be provided with the followings:

6.6.1 Sample outlet

Sample outlet shall be provided with double block and bleed valves located at places where they are convenient to the user.

6.6.2 Water draw-off

a) If a water draw-off is specified for spheres which will operate in a freezing climate, it shall be per Fig. 1. If it is possible for water to accumulate and freeze in bottom manhole, the draw-off pipe shall be extended down to within 75 mm of the manhole cover. A union shall be provided at the turn-down point above the manhole to facilitate access. If the sphere is to be used for storage of materials subject to polymerization or formation of peroxide, i.e., butadiene, isoprene, etc., the internal water draw-off piping shall be deleted and the draw-off connection shall be flushed with the bottom.

b) If water draw-off is specified for spheres in a nonfreezing climatic location and the product will autorefrigerate below 0°C on reduction to atmospheric pressure, the water draw-off may be located in the bottom of the sphere, bottom manhole cover plate, or on a bottom nozzle without internal riser, whichever location provides for all water removal (see Fig. 1). The water draw-off shall be at least DN 20 but shall not exceed DN 50 and shall be equipped with two valves at least 150 mm apart. The valve nearest the vessel shall be of the quick closing type, such as a plug valve (ball valves are not permitted unless certified “Fire-Safe”).

c) The water draw-off line shall terminate at a minimum of 500 mm from the sphere.

6.6.3 Suction internal extension

The hydrocarbon pump suction internal extension shall be 150 mm above the bottom tangent of the sphere or 150 mm above the water draw-off inlet, whichever is higher.

6.6.4 Instrument

Instrument connections shall be provided as follows:

a) Pressure gage (DN 15 coupling at the top of pressure storage sphere).

b) One internal float type automatic ground reading level gage (coupling and connections as required).

c) One differential type local reading level gage (Two DN 15 coupling at the top and bottom of storage).

d) One high level alarm (two DN 40 coupling located at high liquid level).

e) Dial thermometer (DN 25 coupling located at low liquid level).

6.6.5 Cooling water spray and deluge system

Pressure storage spheres shall be provided with cooling water spray or deluge system. A typical water deluge system for sphere is shown in Fig. 2. This will provide a minimum rate of 0.24 to 0.37 m³/hr per m². The water deluge shall cover the total surface above the maximum equator.

For tanks larger than 26 m diameter, the system shall be sized to deliver 0.37 m³/hr per m². Design of water spray and deluge systems shall be in accordance with Sub-section 10.3.2.3 and 10.3.2.1 of API Standard 2510.
6.6.6 Pressure and vacuum relief valves

a) Design of pressure safety relief and relief valves shall be in accordance with ASME Code Section VIII Div. 1

6.6.7 Shutoff valves shall be provided for all vessel connections except the following:

a) Connections on which safety valves are mounted.

b) Connections containing a ¼-inch-maximum restriction orifice, plugs, or thermometer wells.

Note: The draw-off is operated as follow:

1) To draw water, first open valve 2 wide and then throttle with valve 1.
2) After water has been drawn, close valve 1 and open valve 3.
3) Allow time to displace water from the draw off line and then close valves 2 and 3.
4) When water is not being drawn, all valves should remain closed.
DELUGE FEED PIPE AND NOZZLE DIMENSIONS

<table>
<thead>
<tr>
<th>Tank DIAMETER</th>
<th>DELUGE FEED PIPE</th>
<th>DELUGE NOZZLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Size (DN) × Wall Thickness mm</td>
<td>Size (DN) mm</td>
</tr>
<tr>
<td>≤ 13.5</td>
<td>80 × 5.49</td>
<td>80 × 40</td>
</tr>
<tr>
<td>> 13.5 to 18</td>
<td>100 × 6.02</td>
<td>100 × 50</td>
</tr>
<tr>
<td>> 18 to 28</td>
<td>150 × 7.11</td>
<td>150 × 80</td>
</tr>
</tbody>
</table>

Notes:
1) Figure illustrates arrangement and components for spheres but is applicable to dome roof tank installations.
2) Where sectionalized coverage is required, multiple deluge heads and individual piping including control at the valve box shall be provided.
3) The specified 500 mm dimension may be varied to permit the water to clear obstacles such as appurtenances and platforms.

TYPICAL PIPING REQUIREMENTS FOR TOP MOUNTED COOLING WATER DELUGE SYSTEM

Fig. 2
6.7 Access Facilities

6.7.1 Stairways and platforms shall be provided to allow access to operating valves and instruments. Auxiliary structures to service instruments, connections, and access openings at the bottom of the pressure storage sphere shall be provided if specified.

6.7.2 A stairway with handrail shall be provided from ground to the top of the pressure storage sphere.

6.7.3 Stairways shall have the following provisions:
 a) Maximum angle with a horizontal line shall be 45 degrees.
 b) Minimum effective tread width shall be 200 mm.
 c) Minimum effective width of stairways shall be 760 mm.
 d) Stair landings shall not be less than 760 mm in the direction of the stairways.

6.7.4 Railing and toe plates shall enclose all attachments located on the top of the pressure storage sphere.

6.7.5 Steps and flooring plates shall be checkered type, unless otherwise specified. One drain hole of approximately 13 mm diameter shall be provided for every 1.5 m² of floor plate area. Holes shall be located and drilled after installation.

6.8 Supports

6.8.1 Supports shall be capable of supporting weight of the sphere full filled of water.

6.8.2 Spheres, for capacities exceeding 400 m³, shall have tubular steel leg supports welded to the shell.

6.9 Earthing

6.9.1 Pressure storage spheres shall be grounded to provide protection against lightning.

6.10 Fire Proofing

6.10.1 Skirts and tubular leg supports of spheres shall be fireproofed up to the shell of the sphere irrespective of its height.

6.10.2 A rain deflector installed on top of the fireproofing shall prevent ingress of moisture.

7. FABRICATION

Fabrication of pressure storage spheres shall meet the requirements of ASME code Section VIII. Permissible out of roundness for the shells shall be in accordance with the said stipulations.

The requirements of Clause 7 Iranian Petroleum Standard IPS-M-ME-130 “Material and Equipment Standard for Pressure Storage Spheres (For LPG)” shall also be fulfilled.

The following requirements shall be considered as supplementary.

7.1 All connections shall be prefabricated and welded to the shell plates e.g. manholes, nozzles, supports, column stubs and major structural attachments. These parts shall be postweld heat-treated, if required, as a sub-assembly.
7.2 If the entire sphere is to be postweld heat treated, all gussets and lugs shall be welded before the heat treatment.

7.3 Site erected spheres requiring full postweld heat treatment shall have a bottom nozzle of sufficient size to introduce the heating equipment. The piping shall be connected with a reducer to this bottom nozzle.

7.4 Plate material which is cold formed shall be stress relieved if subjected to more than 5% strain at the surface during forming, according to the following formula:

\[
\text{Percent strain} = \frac{100t}{R_f} \left(1 - \frac{R_f}{R_o}\right)
\]

Where:
- \(t \) = Plate thickness (mm)
- \(R_f \) = Final radius after forming (mm)
- \(R_o \) = radius before forming (mm)

Note:
- \(R_o = \infty \) for flat plates

7.5 Tolerances shall be in accordance with ASME code Section VIII, and Clause 7 of IPS-M-ME-130 “Material and Equipment Standard for pressure Storage spheres (For LPG)” and IPS-C-ME-130 “Construction Standard for Pressure Storage Spheres (For LPG)”.

8. WELDING

8.1 Design of welding for pressure storage spheres shall be per Sub-section B Part UW of ASME Code Section VIII Div.1.

8.2 Use of table UW-12 column C of ASME code Section VIII Div.1 regarding joint efficiency is not permitted.

8.3 Spheres shall be designed with the minimum practical number of weld seams with adequate access for the deposition and inspection of weld metal.

8.4 As far as possible, seams shall be positioned clear of supports, etc. so as to be readily visible in service after removing any insulation.

8.5 Qualification for welding procedures, welders and welding operators shall be in accordance with the requirement of ASME Code Section IX.

8.6 The minimum preheat temperature for welding shall be per Table 5 of this Standard.
TABLE 5 - PREHEATING RECOMMENDATIONS FOR WELDING

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>HYDROGEN-CONTROLLED WELD METAL<sup>(1)</sup></th>
<th>NON-HYDROGEN-CONTROLLED WELD METAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>MATERIAL THICKNESS mm<sup>(6)</sup></td>
<td>MIN.PREHEAT TEMPERATURE °C<sup>(7)</sup></td>
</tr>
<tr>
<td>CARBON STEEL</td>
<td>< 30</td>
<td>100<sup>(10)</sup></td>
</tr>
<tr>
<td></td>
<td>> 30</td>
<td></td>
</tr>
<tr>
<td>CARBON-Mn STEEL</td>
<td>< 30</td>
<td>100<sup>(10)</sup></td>
</tr>
<tr>
<td></td>
<td>> 30</td>
<td></td>
</tr>
<tr>
<td>CARBON Mo STEEL</td>
<td>< 20</td>
<td>20<sup>(4)</sup></td>
</tr>
<tr>
<td></td>
<td>> 20</td>
<td>100<sup>(4)</sup></td>
</tr>
<tr>
<td>LOW-ALLOY Mn, Ni Cr, Mo, V STEEL</td>
<td>ALL</td>
<td>(8)</td>
</tr>
<tr>
<td>1.25Cr-0.5Mo</td>
<td>< 20</td>
<td>100<sup>(2)</sup></td>
</tr>
<tr>
<td></td>
<td>> 20</td>
<td>150<sup>(2)</sup></td>
</tr>
<tr>
<td>2.25Cr-1Mo</td>
<td>ALL</td>
<td>200<sup>(2)</sup></td>
</tr>
<tr>
<td>5Cr-0.5 Mo</td>
<td>ALL</td>
<td>200<sup>(2)</sup></td>
</tr>
<tr>
<td>9Cr-1Mo</td>
<td>ALL</td>
<td>250<sup>(3)</sup></td>
</tr>
<tr>
<td>3.5Ni</td>
<td>ALL</td>
<td>(5)</td>
</tr>
<tr>
<td>9.Ni</td>
<td>All<sup>(3)</sup></td>
<td>(5)</td>
</tr>
</tbody>
</table>

Notes:

1) Hydrogen-controlled weld metal contains not more than 10 ml of diffusible hydrogen per 100 g of deposited metal.

2) When TIG/MIG welding is used a lower preheating temperature may be applied provided it has proved to be satisfactory in test procedure.

3) For yield strength 295 N/mm² only hydrogen-controlled weld metal shall be used.

4) Hydrogen-controlled weld metal only shall be used.

5) Depending on the thickness, welding consumables and welding process shall be used.

6) The greatest component thickness at the joint. In the case of tee joints, mainly structural members attached to the shell (stiffeners, cleats, etc.) where the heat can flow into more than two directions, criteria regarding the thickness shall be 2/3 of the values mentioned in the Table 5.

7) Interpass temperatures shall be within the range of the minimum required preheat temperature and the following maximum values of temperature for:
 - Carbon, Carbon-manganese, Carbon-molybdenum steel: 300°C
 - Low-alloy manganese nickel chromium molybdenum: 200°C
 - Vanadium steel 1.25Cr-0.5Mo, 2.25Cr-1Mo, 5Cr-0.5Mo, 9Cr-1Mo steel: 350°C

8) Minimum preheat temperature for tack welding shall be 50°C above the minimum required value mentioned in the Table 5.

9) To be determined individually.

10) Maximum thickness to be applied is 50 mm.

8.7 Post-weld heat-treatment is required for the following pressure storage spheres.
8.7.1 Ferritic steel pressure storages designed to operate above 0°C where the thickness at any welded joint exceeds that listed in Table 6.

8.7.2 Ferritic steel pressure storages designed to operate equal or below 0°C.

8.7.3 Pressure storage spheres intended for service with media liable to cause stress corrosion cracking in service.

8.7.4 Where specified by the Owner.

8.8 Post-weld heat treatment temperature and soaking time at temperature shall be as given in Table UCS-56 ASME Code Section VIII Div. 1.

8.9 All welding shall be completed prior to final heat treatment.

8.10 Joints between shell plates with different thicknesses shall be aligned at the inside surfaces.

8.11 All joints between shell plates shall be of double welded butt type with full penetration and complete fusion.
TABLE 6- REQUIREMENTS FOR POST-WELD HEAT TREATMENT OF FERRITIC STEEL SPHERES

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (mm)</th>
<th>Post-weld heat treatment</th>
<th>Post-weld heat treatment conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Temperature range (°C) min. to max.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minutes per mm thickness</td>
</tr>
<tr>
<td>Carbon and carbon manganese steels</td>
<td>≤ 35</td>
<td>Optional</td>
<td>580 to 620</td>
</tr>
<tr>
<td></td>
<td>> 35</td>
<td>Required</td>
<td>580 to 620</td>
</tr>
<tr>
<td>Carbon and carbon manganese steels (min. KCV of 27 J at -20°C)</td>
<td>≤ 40</td>
<td>Optional</td>
<td>580 to 620</td>
</tr>
<tr>
<td></td>
<td>> 40</td>
<td>Required</td>
<td>580 to 620</td>
</tr>
<tr>
<td>Carbon molybdenum steel</td>
<td>≤ 20</td>
<td>Optional</td>
<td>630 to 670°</td>
</tr>
<tr>
<td></td>
<td>>20</td>
<td>Required</td>
<td>630 to 670°</td>
</tr>
<tr>
<td>Low alloy manganese chromium molybdenum vanadium steel</td>
<td>≤ 15</td>
<td>Optional</td>
<td>580 to 620</td>
</tr>
<tr>
<td></td>
<td>> 15</td>
<td>Required</td>
<td>580 to 620</td>
</tr>
<tr>
<td>3½ Ni</td>
<td>Optional within thickness limits agreed between purchaser and manufacturer, otherwise required</td>
<td>580 to 620°</td>
<td>2½</td>
</tr>
<tr>
<td>9 Ni</td>
<td>Not required</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1 Cr ¼ Mo</td>
<td>All thicknesses</td>
<td>Required</td>
<td>680 to 670° (optimum high temperature properties). 650 to 700° (Max. softening)</td>
</tr>
<tr>
<td>1½ Cr ½ Mo</td>
<td>All thicknesses</td>
<td>Required</td>
<td>680 to 720° (Max. creep resistance)</td>
</tr>
<tr>
<td>½ Cr 12 Mo ¼ V</td>
<td>All thicknesses</td>
<td>Required</td>
<td>710 to 750° (Max. softening)</td>
</tr>
<tr>
<td>2¼ Cr1Mo</td>
<td>All thicknesses</td>
<td>Required</td>
<td>680 to 670° (high tensile)</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td></td>
<td>680 to 720° (Max. creep resistance)</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td></td>
<td>710 to 750° (Max. softening)</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Cr½ Mo</td>
<td>All thicknesses</td>
<td>Required</td>
<td>710 to 750°</td>
</tr>
</tbody>
</table>

- This range is advisory only:
- Post-weld heat treatment is not required for joints welded with Ni base and other austenitic filler metals up to a thickness of 50 mm.
- For ferritic weld metals and for joints in excess of 50 mm, the basis for acceptance should be agreed between the purchaser and the manufacturer.
- Post-weld heat treatment should be avoided where possible because of the high degree of control needed to ensure that the parent metal properties are not degraded.

Note 1: By agreement large spheres C and C Mn steels may be heat treated by following the equivalent time temperature formula:

\[\frac{a + b}{2} > t \]

Where:
- \(a \) is the number of minutes in range 580 °C to 620 °C
- \(b \) is the number of minutes in range 550 °C to 580 °C
- \(t \) is the time in minutes required by this table.
9. SITE ERECTION

9.1 Site erection of pressure storage spheres shall be in accordance with Iranian Petroleum Standard IPS-C-ME-130 “Construction Standard for Pressure Storage Spheres (For LPG)”.

9.2 The shell of a completed pressure storage sphere shall be substantially rounded and the difference between the maximum and minimum inside diameter at any cross section shall not exceed 1% of the nominal diameter at the cross section under consideration.

10. INSPECTION AND TEST

10.1 The inspection and testing for pressure storage spheres shall conform to ASME Code Section VIII, Rules for Construction of Pressure Vessels.

10.2 The latest edition of the following Sections of ASME Code shall be used in conjunction with this Standard:

 a) ASME Code Section V “Non-destructive Examination”.
 b) ASME Code Section IX “Welding and Brazing Qualifications”.

10.3 Pressure storage spheres shall be designed on the basis of spot radiographic examination by ASME Code Section VIII as a minimum.

10.4 Plates to be used for pressure retaining parts in wet H₂S service shall be ultrasonically tested in accordance with ASTM A578, acceptance level 1.

10.5 When required by ASME Code Section VIII, charpy impact tests shall be made on weldments and all materials for shell heads, nozzles and all parts subject to stress due to pressure.

10.6 Inspection of Shell Joints

10.6.1 Unless otherwise specified, pressure storage spheres shell joints shall be spot radiographed.

10.6.2 Method and acceptance standard for spot radiography shall be in accordance with para. UW-52 and those for 100% radiography shall be in accordance with para. UW-51 of ASME Code Section VIII, Div. 1.

10.6.3 A minimum of one spot radiograph shall be taken at each weld intersection and in the case of spheres, one in each vertical (meridional) weld seam.

10.6.4 Shell plate seams which are not stressed to at least the design stress in the corroded condition during the hydrostatic test, shall be subjected to 100% radiographic examination.

10.6.5 Shell seams covered by a nozzle reinforcing pad or any other structural overlay shall be spot radiographed in the portion covered.

10.6.6 Radiographic film shall be equivalent to type 1 or 2 per ASTM E 94 and film length shall be 254 mm minimum.

10.6.7 Where the material having a specified ultimate tensile strength of 50 kgf/mm² and over or pressure storage spheres are designed with full radiographic examination, the back gouged surface shall be ground to the bright metal and fully examined by the use of magnetic particle or liquid penetrant examination method.

10.7 Inspection of Nozzle Welds

10.7.1 For 100% radiographed pressure storage spheres, all welded joints between nozzles and the sphere shell, and between the nozzles and the flanges, shall be examined by the ultrasonic method.
and magnetic particle or dye penetrant method where applicable.

The backside of the root pass, where applicable, shall be examined after being prepared for welding, as well as both sides of the completed weld.

10.7.2 Nozzle to shell welds shall be inspected prior to installation of any reinforcing pad.

10.7.3 For the cases specified in the Table 7, nozzle and attachment welds shall be tested by means of magnetic particle test; dye penetrant shall be used for austenitic welds.

TABLE 7

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>THROAT THK mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON-Mn-STEEL AND</td>
<td>20 OR GREATER</td>
</tr>
<tr>
<td>CARBON-0.5 Mo STEEL</td>
<td></td>
</tr>
<tr>
<td>1Cr-0.5 Mo STEEL</td>
<td>15 OR GREATER</td>
</tr>
<tr>
<td>2½ Cr-1 Mo STEEL</td>
<td>ALL CASES</td>
</tr>
<tr>
<td>5 Cr-0.5 Mo STEEL</td>
<td>ALL CASES</td>
</tr>
<tr>
<td>3.5 Ni STEEL</td>
<td>ALL CASES</td>
</tr>
</tbody>
</table>

10.8 Ultrasonic examination shall be per ASME Code Section VIII Div. 1 Appendix 12.

10.9 Liquid penetrant examination shall be per ASME Code Section VIII Div. 1 Appendix 8.

10.10 Magnetic particle examination shall be per Appendix 6 of ASME Code Section VIII Div. 1. The DC prod method shall be used prior to final post-weld heat treatment and the AC yoke method shall be used after final post-weld heat treatment.

10.11 For non-magnetic materials, liquid penetrant examination shall be used in place of magnetic particle examination.

10.12 Hardness test shall be performed after postweld heat treatment and shall be made on the weld metal and heat affected zone. Hardness value shall not exceed 225 HB.

10.13 Weld joints of reinforcing pad for opening shall be leak tested using air-soap suds method. The test shall be preferably performed using 98 kPa (14.2 Psig) compressed air. The test shall be carried out before post-weld heat treatment, if any, and before hydrostatic test.

10.14 Hydrostatic Test

10.14.1 Pressure storage spheres shall be hydrostatically pressure tested after confirming the acceptance of final inspection and all records of non-destructive examinations excepting that required to be conducted after hydrostatic test.

10.14.2 The test pressure shall be calculated as per ASME SEC. VIII.

10.14.3 Test pressure shall be kept 60 minutes minimum before visual inspection.

11. INSULATION

11.1 For low temperature storage spheres require to be insulated because of the nature of the product stored, sufficient insulation, is required to minimize heat in leakage, to minimize condensation and icing effects. The requirements of this clause are to be regarded as minimal and the detailed design of the insulation system should be undertaken in cooperation with competent
insulation engineers.

11.2 Before applying shell insulation, the sphere should have been satisfactorily tested and the surfaces to be insulated should be clean, free from rust and scale, and any specified painting completed.

11.3 During the period of application of shell insulation the surfaces to be insulated should be kept dry. The work should be adequately protected against the weather and the ingress of water to the insulation should be prevented at all times.

11.4 The weatherproofing applied over shell insulation should be water and vapor tight and care should be taken to ensure that damage to the insulation is avoided.