CONSTRUCTION STANDARD # **FOR** # **AVIATION TURBINE FUEL STORAGE TANKS** # **ORIGINAL EDITION** **MAY. 1993** This standard specification is reviewed and updated by the relevant technical committee on Jan. 1999. The approved modifications are included in the present issue of IPS. | CONTENTS: | PAGE No. | |----------------------|----------| | 1. SCOPE | 3 | | 2. REFERENCES | | | 3. UNITS | 3 | | 4. MATERIAL | | | 5. FOUNDATION | | | 6. SITE ERECTION | | | 6.1 General | | | 6.2 Erection Methods | | | 6.3 Bottom Plating | 4 | | 6.4 Shell Plating | 5 | | 6.5 Roof Erection | | | 7. WELDING | | | 8. TOLERANCES | | | 9. INSPECTION | | | 10. TANK TESTING | | | 11. PAINTING | 7 | # **0. INTRODUCTION** "Storage Tanks" are broad and contain variable types and usages of paramount importance therefore, a group of construction standards are prepared to cover the subject. This group includes the following standards. ## STANDARD CODESTANDARD TITLE | <u>IPS-G-ME-100</u> | Atmospheric Above Ground Welded Steel Storage Tanks | |---------------------|---| | IPS-C-ME-110 | Large Welded Low Pressure Storage Tanks | | IPS-C-ME-120 | Aviation Turbine Fuel Storage Tanks | | IPS-C-ME-130 | Pressure Storage Spheres (for LPG) | This Construction Standard Specifies the minimum requirements for the construction of "Aviation Turbine Fuel Storage Tanks". However when purchasing and quality control of materials to be incorporated into storage tanks, engineering and design is concerned, reference is made to types M, E Standards. 2 #### 1. SCOPE This Construction Standard, covers the minimum requirements for site erection of aviation turbine fuel storage tanks, the type of floating roof with a fixed roof at the top of its shell. The requirements of this specification are supplementary to Appendix H of API Standard 650, 8th edition and take precedence where differ from those outlined in the afore mentioned specifications. This specification is to be used in conjunction with IPS-G-ME-100 "General Standard for Atmospheric above ground welded steel storage tanks" and Appendix H of API Standard 650. It should be noted that when only purchasing of materials and equipment to be incorporated into the storage tanks are involved, the requirements of Iranian Petroleum Material and Equipment Standard for Aviation turbine fuel Storage tanks (<u>IPS-M-ME-120</u>) shall be met. Design and engineering of storage tanks shall be in accordance with Iranian Petroleum Engineering and Design Standard for Aviation turbine fuel Storage Tanks (IPS-E-ME-120). ## Note: This standard specification is reviewed and updated by the relevant technical committee on Jan. 1999. The approved modifications by T.C. were sent to IPS users as amendment No. 1 by circular No 52 on Jan. 1999. These modifications are included in the present issue of IPS. ## 2. REFERENCES Throughout this Standard the following dated and undated standards/codes are referred to. These referenced documents shall, to the extent specified herein, form a part of this standard. For dated references, the edition cited applies. The applicability of changes in dated references that occur after the cited date shall be mutually agreed upon by the Company and the Vendor. For undated references, the latest edition of the referenced documents (including any supplements and amendments) applies. # API (AMERICAN PETROLEUM INSTITUTE) API Standard 650 Appendix H 1988 "Welded Steel Tanks for Oil Storages" ## **IPS (IRANIAN PETROLEUM STANDARDS)** | E-CE-120 | "General Requirements for Foundations" | |-----------------|---| | <u>M-ME-120</u> | "Material and Equipment Standard for Aviation Turbine Fuel Storage Tanks" | | <u>E-ME-120</u> | "Engineering and Design Requirements for Aviation Turbine Fuel Storage Tanks" | | E-TP-100 | "General Requirements for Paints" | | E-GN-100 | "Engineering Standard for Units" | | <u>G-ME-100</u> | "General Standard for Atmospheric Above Ground Welded Steel Storage Tanks" | #### 3. UNITS International system of units (SI) in accordance with IPS-E-GN-100 shall be used. Whenever reference is made to API/ASME or any other standard, equivalent SI unit system for dimensions, fasteners and flanges shall be substituted. #### 4. MATERIAL **4.1** The erection contractor shall inspect and keep stock of all materials delivered and be fully responsible for their safekeeping. IPS-C-ME-120 All fittings, valves, plates, etc. shall be properly laid down on wooden supports clear of soil. Special care shall be taken that damage does not occur to joint faces of valves or flanges or to beveled ends of fittings. - **4.2** Any damage to materials shall be corrected to the satisfaction of the owner prior to erection, particular attention shall be paid to the removal of buckles and distortions in the shell and bottom plates. - **4.3** Welding electrodes shall be stored in their original packets or cartons in a dry place adequately protected from weather effects. If the electrodes become damp but are not otherwise damaged they may be used only after being dried out in a manner approved by the electrode manufacturers. Any of the electrodes which have areas of the coating broken away or damaged shall be discarded. Hydrogen controlled electrodes shall be stored and baked in accordance with the electrode manufacturer's recommendations. - **4.4** The responsibility for the supply of site erection equipment, labor, false work, etc. lies with the erection contractor. #### 5. FOUNDATION **5.1** For general requirements on foundation, refer to Section 5 of IPS-G-ME-100 "General Standard for Atmospheric above Ground Welded Steel Storage Tanks". ## 6. SITE ERECTION ## 6.1 General - **6.1.1** Site erection of aviation fuel storage tanks shall be in accordance with Appendix H of API Standard 650 and the following supplementary requirements. - **6.1.2** Erection contractor shall supply all labor, supervision, materials, tools and inspection materials in addition to the requirements in the condition of contract to erect the storage tank(s). - **6.1.3** Temporary attachments to assist in erection may be attached to the tank plates by welding provided all such attachments shall ultimately be removed without any noticeable projection of weld metal remaining or any indentation. - **6.1.4** Erection holes shall not be permitted in plate work. ## **6.2 Erection Methods** **6.2.1** Any proposed method may be used provided the proposed method is approved by the owner. # 6.3 Bottom Plating - **6.3.1** Bottom plating shall be in accordance with the storage tank constructional drawing. Attention shall be paid to erection marks made on bottom plates according to a marking diagram which is supplied by the tank plate fabricator for the use of tank erector. - **6.3.2** Unless otherwise specified, after the bottom plates are laid down and tacked, they shall be joined by welding the joints in a sequence that the erector has found to result in the least distortion from shrinkage and thus to provide as nearly as possible a plane surface. - **6.3.3** Manual gas cutting may be used for trimming the corners of bottom plates where two lapped joints intersect and for cutting openings for fittings positioned on site. - **6.3.4** Lap jointed bottom plates shall be laid, commencing with the center plate and with subsequent plates lapped towards the center of the tank. Layout shall be as indicated in Fig. 1. # 6.4 Shell Plating - **6.4.1** Shell plating and protection of shell during erection for aviation fuel storage tanks shall be as stated in Subsection 6.4 of IPS-G-ME-100 "General Standard for Atmospheric above ground Welded Steel Storage Tanks". - **6.4.2** Lugs or other projections on the interior shell surface shall be removed and any sharp-edged projections of weld metal chipped or ground from the plate. Any sharp-edged scars shall be filled with weld metal and ground smooth. ## 6.5 Roof Erection - **6.5.1** The method of erection for the internal floating cover shall be submitted to the owner for approval. - **6.5.2** The requirements of Section 6.5 of <u>IPS-G-ME-100</u> for the erection of fixed roof and internal floating cover shall apply. - **6.5.3** In the construction of the floating cover, every care should be taken to minimize distortion or lack of circularity due to welding or other reasons. The clearance between the periphery of the cover and the tank shell should be uniform and comply with the dimensional requirements specified for the seal. a) Typical bottom layout for tanks up to and including 12.5m diameter May. 1993 IPS-C-ME-120 **b)** Typical bottom layout for tanks over 12.5m diameter. For layout of plates similar to Section A-A and B-B see a). ## **TYPICAL BOTTOM LAYOUTS FOR TANKS** Fig. 1 #### 7. WELDING - **7.1** All welding, including repair, tack and attachment welding, shall be carried out according to the welding procedure established, and by approved welders. - 7.2 All seams in the cover shall be vapor tight. - **7.3** Shell plates shall have inside seams which are sufficiently smooth to prevent interference with the movement of the internal floating cover. - **7.4** All requirements stated in Section 7 of IPS-G-ME-100 shall also be met. # 8. TOLERANCES - **8.1** The tank shell shall be carefully checked for circularity, dimensions and level before the roof members of fixed roof are erected. - **8.2** Seals shall be above product level and shall not dip into the product during upward travel of the roof. Seals shall contact the shell above the liquid level for at least 90% of the tank circumference. Maximum permissible gap between the seal and the tank shell is 6 mm. - **8.3** The peripheral seal and seals around column, etc., shall be such as to accommod at 125 mm out of plumb. - **8.4** For the fixed roof tank, after completion, the shell shall not be out of vertical more than the followings: | Tanks < 12.5 m in diameter | 1 in 400 | |-----------------------------------|----------| | Tanks > 12.5 m < 30 m in diameter | 1 in 350 | | Tanks > 30 m < 45 m in diameter | 1 in 300 | These tolerances are mandatory for the tank shell as a whole and should also be used as a guidance for each individual course. May. 1993 IPS-C-ME-120 8.5 At horizontal and vertical shell seams, the shell profile shall not deviate from its design form by more than the following, measured over gage length of 1m. Plates < 12.5 mm thk. 10 mm Plates > 12.5 mm < 25 mm thk 8 mm Plates > 25 mm thk. 6 mm # 9. INSPECTION - 9.1 Site inspection of aviation fuel storage tanks shall be in accordance with applicable requirements of Section 9 of IPS-G-ME-100 and the following. - 9.2 Before a floating cover is put into operation, it should be carefully tested for liquid tightness. Lap welded joints in floating covers may be tested by the vacuum box method or by the use of high penetrating oil. - 9.3 Alternatively, when the compartments are completely welded, each completed compartment of pontoon roof shall be individually tested with an air pressure of 7 m bar gage, a soapy water solution being applied to all welded joints under pressure which have not been previously tested with penetrating oil. - 9.4 All leaks detected during inspection shall be rectified to the satisfaction of the owner or his representative. #### 10. TANK TESTING - 10.1 Testing of aviation fuel storage tanks shall be in accordance with the applicable requirements of Section 10 of IPS-G-ME-100 and the followings: - 10.1.1 On completion, the tank should be filled with water, to check that the cover and seals travel freely to the full operating height and that the cover is free from leaks. - 10.1.2 Manholes in the fixed roof should be kept closed during testing in wet weather, since any ingress of rainwater might lead to false conclusion on water tightness. - 10.1.3 Any damp spot on the cover should be taken as an indication of a possible leak. Time may be necessary for leaks to become evident and checks should therefore be made at frequent intervals, particulary during the first meter of filling. - 10.1.4 For aluminum covers, only water having less than 150 ppm chlorides shall be used for hydrostatic testing. Potable water will meet this requirement. - 10.1.5 All leaks detected during testing should be rectified to the satisfaction of the owner or his representative. #### 11. PAINTING 11.1 If required, external or internal painting of aviation fuel storage tanks shall be in accordance with Table 1 and Appendix C of Iranian Petroleum Standard No. IPS-E-TP-100 "General Requirements for Paints". #### 12. SPACING AND DIKES 12.1 Spacing and dikes for aviation turbine fuel storage tanks shall be per Section 12 of IPS-G-ME-100 "Construction Standard for Atmospheric Above Ground Welded Steel Storage Tanks".