chapter 1 introduction
features and benefits of hdpe pipe
ductility
visco-elasticity
summary
references

chapter 2 inspections, tests and safety consideration
introduction
handling and storage
handling equipment
general considerations during installation
inspection and testing
post installation
considerations for post start-up and operation

chapter 3 engineering properties
polyethylene plastics
history of polyethylene
manufacture of polyethylene
polymer characteristics
molecular weight
effect of molecular weight distribution on properties
mechanical properties
-establisihing long-term design properties
-tensile creep curves
-tensile creep or apparent modulus
-stress relaxation
-simplified representation of creep and
-stress-relaxation modulus
-creep recovery
-creep rupture
-long-term hydrostatic strength
-rate process method validation
-fracture mechanics
-cyclic fatigue endurance
short-term mechanical properties
-tensile properties
-general physical properties
-impact strength
-hardness
-abrasion resistance
-permeability
-thermal properties
electrical properties
flammability and combustion toxicit
chemical resistance
aging
toxicological properties
chapter 4 polyethylene pipe and fittings manufacturing
introduction
pipe extrusion
raw materials description
extrusion line
raw materials handling
drying
extrusion principles
extruders
die design
pipe sizing operation
cooling
pullers
take-off equipment
saw equipment and bundling
fittings overview
injection molded fittings
fabricated fittings
quality control/quality assurance testing

chapter 5 specifications, test methods and codes for polyethylene piping systems
introduction
properties and classification of polyethylene material
material selection and specification
-astm d-3350 Standard specification for polyethylene material
-plastics pipe and fittings materials
-thermal stability
-polyethylene grade - d 3350
-ppi designations
test methods and standards for stress rating, dimensioning, fittings and joining of polyethylene pipe systems
-pressure rating of polyethylene pipe
dimensioning systems
standard specifications for fittings and joinings
codes, standards and recommended practices for polyethylene piping systems
-plastics pipe institute (ppi)
-astm
-iso
-nsf international
-awwa
-plumbing codes
-other codes and standards
-factory mutual

chapter 6 design of polyethylene piping systems
introduction
section 1 design for flow capacity
pipe id for flow calculations
-pressure rating for pressure rated pipes
-fluid flow in polyethylene piping
--head loss in pipes
--pipe deflection effects
--head loss in fittings
--head loss due to elevation change
-pressure flow of water Hazen-williams
-surge considerations
- pressure flow of liquid slurries
- compressible gas flow
- gravity flow of liquids
- flow velocity
- pipe surface condition, aging

section 2 buried pe pipe design
introduction
calculations
installation category #1: standard installation-trench or embankment
installation category #2: shallow cover vehicular loading
installation category #3: deep fill installation - radial earth pressure example
-ring deflection of pipes using watkins-gaube graph
-watkins • Gaube calculation technique
-moore-selig equation for constrained buckling in dry ground
-critical buckling example
installation category #4: shallow cover flotation effects
-design considerations for ground water flotation
-unconstrained pipe wall buckling (hydrostatic buckling)
-ground water flotation example

section 3 thermal design considerations
introduction
-unrestrained thermal effects
-end restrained thermal effects
-above ground piping systems
-buried piping systems

chapter 7 underground installation of polyethylene piping
introduction
flexible pipe installation theory
deflection control
pipe embedment materials
terminology of pipe embedment materials
classification and supporting strength of pipe embedment materials
installation procedure guidelines
inspection
references

chapter 8 above-ground applications for polyethylene
introduction
design criteria
temperature
chemical resistance
ultraviolet exposure
mechanical impact or loading
design methodology
pressure capability
expansion and contraction
installation characteristics
on-grade installations
restrained pipelines
supported or suspended pipelines
anchor and support design
pressure-testing
chapter 9 polyethylene joining procedures
introduction
general provisions
thermal heat fusion methods
- butt fusion
- optional bead removal
- saddle/conventional fusion
- socket fusion
- documenting fusion
- heat fusion joining of unlike polyethylene pipe
and fittings
mechanical connections
- mechanical compression couplings for small
diameter pipes
- stab type mechanical fittings
mechanical bolt type couplings for large diameter pipes
- flanged connections
- polyethylene flange adapters and stub ends
- flange
- special cases
- mechanical flange adapters
- mechanical joint (mj) adapters
- transition fittings
- mechanical joint saddle fittings
repair clamps
other applications

chapter 10 marine installations
introduction
the float-and-sink method ∗ Basic design and
installation steps
- selection of an appropriate pipe diameter
- determination of the required sdr
- determination of the required weighting, and of
the design and the spacing of ballast weights
- selection of an appropriate site for staging, joining and launching the pipe
- preparing the land-to-water transition zone and,
when required, the underwater bedding
- assembly of individual lengths of pipe into long
continuous lengths
- mounting the ballasts on the pipe
- launching the pipeline into the water
- submersion of the pipeline using the float-and-sink method
- completing the construction of the land-to-water transition
post-installation survey
other kinds of marine installations

chapter 11 pipeline rehabilitation by sliplining with polyethylene pipe
introduction
design considerations
- select a pipe liner diameter
- determine a liner wall thickness
- determine the flow capacity
- design the accesses
- develop the contract documents
- the sliplining procedure
- other rehabilitation methods
- swagelining
chapter 12 horizontal directional drilling

introduction
background
polyethylene pipe for horizontal directional drilling
horizontal directional drilling process
geotechnical investigation
product design: dr selection
design considerations for net external loads
earth and groundwater pressure
performance limits
performance limits of hdd installed pipe
ring deflection (ovalization)
installation design considerations
pullback force
tensile stress during pullback
external pressure during installation
bending stress
thermal stresses and strains
torsion stress

chapter 13 hvac applications

introduction
ground source heat pump systems
types of ground heat exchangers
pipe specifications and requirements
pipe joining methods
pipe installation
pressure testing ground heat exchanger
solar applications
collector technologies
vacuum systems

chapter 14 duct and conduit

introduction
conduit specifications
applications
advantages of pe conduit
installation
features
material selection
physical properties
design considerations
installation methods
joining methods
friction in conduit systems
special applications
bridge structures